Riemannian Manifold Kernel for Persistence Diagrams
نویسندگان
چکیده
Algebraic topology methods have recently played an important role for statistical analysis with complicated geometric structured data. Among them, persistent homology is a well-known tool to extract robust topological features, and outputs as persistence diagrams. Unfortunately, persistence diagrams are point multi-sets which can not be used in machine learning algorithms for vector data. To deal with it, an emerged approach is to use kernel methods. Besides that, geometry for persistence diagrams is also an important factor. A popular geometry for persistence diagrams is the Wasserstein metric. However, Wasserstein distance is not negative definite. Thus, it is limited to build positive definite kernels upon the Wasserstein distance without approximation. In this work, we explore an alternative Riemannian manifold geometry, namely the Fisher information metric. By building upon the geodesic distance on the Riemannian manifold, we propose a positive definite kernel, namely Riemannian manifold kernel. Then, we analyze eigensystem of the integral operator induced by the proposed kernel for kernel machines. Based on that, we conduct generalization error bounds via covering numbers and Rademacher averages for kernel machines using the Riemannian manifold kernel. Additionally, we also show some nice properties for the proposed kernel such as stability, infinite divisibility and comparative time complexity with other kernels for persistence diagrams in term of computation. Throughout experiments with many different tasks on various benchmark datasets, we illustrate that the Riemannian manifold kernel improves performances of other baseline kernels. RIKEN, Japan. Correspondence to: Tam Le .
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.03569 شماره
صفحات -
تاریخ انتشار 2018